\section*{1.0 Introduction}

Described here is the Relative Humidity Uncertainty Analysis, following the Guidelines of NIST and NCSL International \cite{1, 6, 7}, for a Model 2500 Humidity Generator that utilizes the NIST developed and proven two-pressure humidity generation principle \cite{2, 3}. Generation of humidity in a system of this type does not require direct measurements of the water vapor content of the gas. Rather, the generated humidity is derived from the measurements of saturation and chamber pressures, and saturation and chamber temperatures.

The measurement instrumentation used in both our in-house working standards and our manufactured devices are obtained from companies which have demonstrated either NIST traceability or traceability to other acceptable standards. In most cases we therefore use the specifications supplied by these manufacturers as the starting point for our uncertainty statements. Over time, check calibrations against a NIST traceable pressure gauge and NIST traceable standard resistance thermometer, as well as the results of an on-going intercomparison program of both the individual components and of the outputs of operating generators, have allowed the determination of the ranges of disagreement among the various temperatures and pressures that enter into the final determination of the output uncertainties. The average values of these disagreements represent the uncertainties from our in-house processes and things like instrument drift over time, and these are coupled with the uncertainties given by the various instrument manufacturers to give overall uncertainty statements.

This document lists the various uncertainty sources, their magnitudes, and their origins over the operating range of the 2500 generator. Calculations of uncertainties associated with specific generator outputs are done in detail.

\section*{2.0 Defining Equations}

NIST Technical Note 1297\cite{1} states that the uncertainty in a dependent variable, which depends only on uncorrelated input variables, is

\[u^2(y) = \sum_i u^2(x_i) \left(\frac{\partial y}{\partial x_i} \right)^2 \] \hspace{1cm} (1)

Relative Humidity in a two-pressure humidity generator is determined from the measurements of temperature and pressure only and is expressed by the formula \cite{3}

\[\%RH = \frac{e_s(T_s) f(T_s, P_s)}{e_s(T_C) f(T_C, P_C)} \cdot \frac{P_C}{P_S} \eta_S \] \hspace{1cm} (2)

Whereas the dew point and frost point temperatures are defined implicitly by the following relations and must be obtained through iterative solutions.
\[e_w(T_D) = e_s(T_S) \cdot \frac{f(T_S, P_S)}{f(T_D, P_C)} \cdot \frac{P_C}{P_S} \cdot \eta_S \] (3)

\[e_f(T_F) = e_s(T_S) \cdot \frac{f(T_S, P_S)}{f(T_F, P_C)} \cdot \frac{P_C}{P_S} \cdot \eta_S \] (4)

Where the \(f \) functions are enhancement factors, \(e_s \) is the saturation vapor pressure, \(e_w \) is the saturation vapor pressure over water, \(e_I \) is the saturation vapor pressure over ice, \(\eta_S \) is the \% efficiency of saturation, \(T_D \), \(T_F \), \(T_C \), \(T_S \) are the dew point, frost point, chamber and saturation temperatures, and \(P_C \) and \(P_s \) are the chamber and saturation pressures.

By incorporating the relationship in equation 2 into an uncertainty equation of the form of equation 1, it can be shown that the total uncertainty in relative humidity is given by the expression

\[u^2(RH) = u^2(T_C) \left(\frac{\partial RH}{\partial T_C} \right)^2 + u^2(T_S) \left(\frac{\partial RH}{\partial T_S} \right)^2 + u^2(P_C) \left(\frac{\partial RH}{\partial P_C} \right)^2 + u^2(P_S) \left(\frac{\partial RH}{\partial P_S} \right)^2 + u^2(\eta_S) \left(\frac{\partial RH}{\partial \eta_S} \right)^2 \] (5)

Similarly, the uncertainties in dew point and frost point measurement are

\[u^2(T_D) = u^2(T_S) \left(\frac{\partial T_D}{\partial T_S} \right)^2 + u^2(P_C) \left(\frac{\partial T_D}{\partial P_C} \right)^2 + u^2(P_S) \left(\frac{\partial T_D}{\partial P_S} \right)^2 + u^2(\eta_S) \left(\frac{\partial T_D}{\partial \eta_S} \right)^2 \] (6)

and

\[u^2(T_F) = u^2(T_S) \left(\frac{\partial T_F}{\partial T_S} \right)^2 + u^2(P_C) \left(\frac{\partial T_F}{\partial P_C} \right)^2 + u^2(P_S) \left(\frac{\partial T_F}{\partial P_S} \right)^2 + u^2(\eta_S) \left(\frac{\partial T_F}{\partial \eta_S} \right)^2 \] (7)

Clearly there are five inputs, which contribute uncertainty to the generation of relative humidity. These are the uncertainties in the two pressures, two temperatures, and the efficiency of saturation. There are four inputs, which contribute uncertainty to the generation of dew point and frost point. These are the uncertainties in the two pressures, saturation temperature, and the efficiency of saturation.

3.0 Uncertainty Components

In the mathematical analysis of equation 2, we’ll analyze the uncertainties due to each of the above ratios separately, then combine the uncertainties to obtain the total expanded uncertainty. We are therefore concerned with four specific categories of uncertainty, each of which may have associated uncertainty components.

- uncertainty contribution from the pressure ratio term \(P_C/P_s \), which includes measurement uncertainty, measurement hysteresis, measurement resolution
- uncertainty contribution from the vapor pressure ratio term \(E_S/E_I \), which includes
measurement uncertainty
saturation vs. chamber temperature intercomparison uncertainty
measurement resolution
chamber temperature self heating
chamber temperature uniformity

- uncertainty contribution from the enhancement factor ratio \(F_s/F_c \)
- uncertainty contribution from saturator efficiency

3.1 Uncertainty in the Pressure Ratio, \(\frac{P_c}{P_s} \)

The pressure ratio term, \(\frac{P_c}{P_s} \), in a two-pressure humidity generator is the major %RH determining factor since both the \(E_s/E_c \) and \(F_s/F_c \) ratios are nearly equal to 1. Under those conditions, \(RH \approx \frac{P_c}{P_s} \times 100 \). To determine the affect a small change in pressure has on the computed RH, the difference can be taken between the RH computed with the pressure uncertainty included, and the RH computed without this uncertainty. This in effect is the partial numeric differential of RH with respect to pressure, computed at that pressure. The equation for this becomes

\[
u(P) = \pm \left\{ \left[\frac{(P_c \pm \partial P_c)}{(P_s \pm \partial P_s)} \times \frac{F_s}{F_c} \times \frac{E_s}{E_c} \times 100 \right] - RH \right\}
\] (8)

where \(u(P) \) is designated as the uncertainty in relative humidity due to pressure

\[
\partial P_c = \text{delta-chamber-pressure measurement, for which we will use one standard deviation in chamber pressure measurement uncertainty.}
\]

\[
\partial P_s = \text{delta-saturation-pressure measurement, for which we will use one standard deviation in saturation pressure measurement uncertainty.}
\]

This equation may be simplified by substituting \(F_s/F_c = 1 \) and \(E_s/E_c = 1 \), as those two ratios will be dealt with later. Also note, with these simplifying assumptions, that \(RH = \frac{P_c}{P_s} \times 100 \). Since the focus here is on differences between the ideal and the delta-induced values, the simplifying assumptions remain valid for the remainder of this uncertainty analysis. In quantifying components, applying each of these substitutions results in

\[
u(P) = \pm \left\{ \left[\frac{(P_c \pm \partial P_c)}{(P_s \pm \partial P_s)} - \left(\frac{P_c}{P_s} \right) \right] \times 100 \right\}
\] (9)

In the use of this formula, it may be necessary to apply values to only \(\partial P_c \) or \(\partial P_s \) while maintaining all others constant. Or it may be necessary to apply both simultaneously with careful application of sign. The method chosen in each instance depends upon the component of uncertainty being evaluated and related factors.

In determining components of uncertainty, there are several things to consider, such as measurement uncertainty, measurement hysteresis, and measurement resolution.

3.1.1 Measurement Uncertainty Components of Pressure

Measurement uncertainty components of pressure were analyzed from \textit{as found} data of 10 separate Model 2500 humidity generators during their annual recalibrations. Each system was tested at no fewer than 3 points over the range of the individual pressure transducers, resulting in no fewer than 30 measurement results from which to compute statistical standard deviations.
For saturation pressures above 50 psia, one transducer measures the chamber pressure and a separate transducer measures the saturation pressure. In this mode of operation, the standard deviation from the desired mean values are:

\[
\begin{align*}
\text{Std dev } &= 0.039 \text{ psia for } P<50 \text{ psia} \\
\text{Std dev } &= 0.089 \text{ psia for } P>50 \text{ psia}
\end{align*}
\]

The statistical standard deviations calculated from the calibration history also have an uncertainty component from the Mensor PCS400 pressure standard used during the calibration process. The uncertainty of the Mensor PCS400 pressure standard for the low and high-pressure ranges are as follows:

\[
\begin{align*}
\upsilon_{Pc[std]} &= 0.007 \text{ psia} \\
\upsilon_{Ps[std]} &= 0.007 \text{ psia for } P<50 \text{ psia} \\
&= 0.033 \text{ psia for } P>50 \text{ psia}
\end{align*}
\]

Therefore, the uncertainties in chamber and saturation pressure measurements, \(\partial P_c\) and \(\partial P_s\), are

\[
\begin{align*}
\partial P_c &= \sqrt{(0.039)^2 + (0.007)^2} = 0.040 \text{ psia} \\
\partial P_s &= \sqrt{(0.089)^2 + (0.033)^2} = 0.095 \text{ psia for } P>50 \text{ psia}
\end{align*}
\]

3.1.1.1 Measurement Uncertainty due to Pressure when \(Ps>50\) psia

Sample calculations of the pressure uncertainty contributions would go as follows. First assume conditions where the ambient (i.e., chamber) pressure is 14.7 psia. Since the chamber can operate only at ambient pressure, then the chamber pressure is \(P_c=14.7\). The individual %RH uncertainty contributions due to the pressure ratio term under these conditions are then written and analyzed numerically for the high range saturation pressures as

\[
\begin{align*}
\upsilon(P_c) &= ±\{P_c ± \partial P_c \}/(P_s - (P_c/P_s)) \times 100 \\
&= ±\{± \partial P_c/P_s\} \times 100 \\
&= ±\{± 0.040/50\} \times 100 \\
&= ±0.079 \%\text{RH (at } P_s=50, \%\text{RH}= P_c/P_s*100 = 29.40) \\
\upsilon(P_s) &= ±\{(P_c)/(P_s ± \partial P_s) - (P_c/P_s)\} \times 100 \\
&= ±\{(14.7)/(50 ± 0.095) – (14.7/50)\} \times 100 \\
&= ±0.056 \%\text{RH (at } P_s=50, \%\text{RH} =29.40)
\end{align*}
\]

where \(\upsilon(P_c)\) is RH uncertainty due to uncertainty in chamber pressure \(P_c\),
\(\upsilon(P_s)\) is RH uncertainty due to uncertainty in saturation pressure \(P_s\).

Note: In the above equations, only one value was varied at a time. Because of this and the fact that the values will be squared before further use, the sign of the result is of no concern.

Now, performing the same calculations at a saturation pressure of 100 psia results in

\[
\begin{align*}
\upsilon(P_c) &= ±\{± 0.040/100\} \times 100 \\
&= ±0.040 \%\text{RH (at } P_s=100, \%\text{RH}=14.70)
\end{align*}
\]
\[u(P_s) = \pm \{(14.7)/(100 \pm 0.095) - (14.7/100)\} \times 100 \]
\[= \pm 0.014 \text{\%RH (at } P_s=100, \text{\%RH=14.70)} \]

Performing the same calculations at a saturation pressure of 150 psia results in
\[u(P_c) = \pm 0.026 \text{\%RH (at } P_s=150, \text{\%RH=9.80)} \]
\[u(P_s) = \pm 0.006 \text{\%RH (at } P_s=150, \text{\%RH=9.80)} \]

Notice that as saturation pressure increases, \%RH uncertainty decreases as expected.

3.1.1.2 Measurement Uncertainty due to Chamber Pressure when \(P_s < 50 \text{ psia} \)

For saturation pressures below 50 psia, a different measurement scheme is employed. Rather than using two separate transducers for measuring chamber and saturation pressures, only one transducer is used and it is time shared between the chamber and saturator. While this approach reduces RH uncertainty, it complicates the analysis somewhat. Any measurement deviation in this single transducer will simultaneously affect both the chamber and saturation pressure readings. So when accounting for this uncertainty, it should be applied equally to both the chamber and saturation pressures simultaneously, and both instances of it must contain the same sign and magnitude. Computing uncertainty due to chamber pressure uncertainty then becomes
\[u(P_c) = \pm \{(P_c + \partial P_c)/(P_s + \partial P_s) - (P_c/P_s)\} \times 100 \]

(12)

Computing uncertainty due to chamber pressure measurement at various saturation pressures between \(P_s=15.5 \) and 50 psia results in
\[u(P_c) = \pm \{(14.7 + 0.040)/(15.5 + 0.040) - (14.7/15.5)\} \times 100 \]
\[= \pm 0.013 \text{\%RH (at } P_s=15.5, \text{\%RH=94.84)} \]
\[u(P_c) = \pm \{(14.7 + 0.040)/(20 + 0.040) - (14.7/20)\} \times 100 \]
\[= \pm 0.052 \text{\%RH (at } P_s=20, \text{\%RH=73.50)} \]
\[u(P_c) = \pm \{(14.7 + 0.040)/(30 + 0.040) - (14.7/30)\} \times 100 \]
\[= \pm 0.067 \text{\%RH (at } P_s=30, \text{\%RH=49.00)} \]
\[u(P_c) = \pm \{(14.7 + 0.040)/(40 + 0.040) - (14.7/40)\} \times 100 \]
\[= \pm 0.062 \text{\%RH (at } P_s=40, \text{\%RH=36.75)} \]
\[u(P_c) = \pm \{(14.7 + 0.040)/(50 + 0.040) - (14.7/50)\} \times 100 \]
\[= \pm 0.056 \text{\%RH (at } P_s=50, \text{\%RH=29.4)} \]

3.1.1.3 Measurement Uncertainty due to Saturation Pressure with \(P_s < 50 \)

The final component of pressure measurement uncertainty to account for when dealing with saturation pressures below 50 psia is the uncertainty due to saturation pressure. The same transducer is used for both the saturation and chamber pressure measurements, and some uncertainty of this transducer has already been accounted for in the analysis due to chamber pressure measurement uncertainty. Double counting of the uncertainty component associated with the saturation pressure measurement can be avoided estimating its weighted value based on the value of the reading. For instance, at 50 psia the entire uncertainty of ±0.039 psia should apply, but at lower pressures, the uncertainty in measurement should drop proportionately. The
uncertainty should therefore be accounted for as a function of reading rather than a straight sum. This scaled uncertainty in pressure measurement is then estimated by

\[\partial P_s = \frac{0.040}{50} * P_s \]
\[= 0.0008 * P_s \quad [\text{for } P_s < 50 \text{ psia}] \]

The associated uncertainty formula will then be

\[u(P_s) = \pm \left(\frac{(P_c)/(P_s + \partial P_s) - (P_c/P_s)}{100} \right) \]

(13)

Computing uncertainty due to saturation pressure measurement at various saturation pressures between \(P_s = 15.5 \) and 50 psia (with \(P_c = 14.7 \)) results in

\[\begin{align*}
 u(P_s) &= \pm 0.075 \%\text{RH} \quad (\text{at } P_s = 15.5, \%\text{RH} = 94.84) \\
 u(P_s) &= \pm 0.058 \%\text{RH} \quad (\text{at } P_s = 20, \%\text{RH} = 73.50) \\
 u(P_s) &= \pm 0.039 \%\text{RH} \quad (\text{at } P_s = 30, \%\text{RH} = 49.00) \\
 u(P_s) &= \pm 0.029 \%\text{RH} \quad (\text{at } P_s = 40, \%\text{RH} = 36.75) \\
 u(P_s) &= \pm 0.023 \%\text{RH} \quad (\text{at } P_s = 50, \%\text{RH} = 29.40)
\end{align*} \]

3.1.2 Uncertainty due to Pressure Hysteresis

When the low range pressure transducer is time shared as it is for saturation pressures below 50 psia, the transducer is also subject to some measurement hysteresis. For more than 98% of the time, the transducer monitors the saturation pressure (approximately 5 minutes). For less than 2% of the time (once every 5 minutes for approximately 5 seconds), the transducer monitors the chamber pressure. By this criteria, it is only the chamber pressure which is affected by hysteresis. Again the sign of the deviation is important since hysteresis will always tend to increase the apparent measured value of the chamber pressure. The equation for uncertainty due to hysteresis, \(u(H) \), is

\[u(H) = \pm \left(\frac{(P_c + \text{Hysteresis})/(P_s) - (P_c/P_s)}{100} \right) \]

The maximum amount of hysteresis is estimated as \(+0.1\%\) of the measured difference between the saturation and chamber pressures, with a rectangular distribution. The full interval is believed to ride on only one side of the true value, rather than centered about its mean. Therefore, the full interval, rather than half interval, is used in the following computations

\[\text{Hysteresis} = \left\{ \frac{0.1\% \times (P_s - P_c)}{\sqrt{3}} \right\} \]
\[= 0.00058 \times (P_s - P_c) \]

So the uncertainty component due to hysteresis is then computed as

\[u(H) = \pm \left(\frac{(P_c + 0.00058 \times (P_s - P_c))(P_s) - (P_c/P_s)}{100} \right) \]
\[= \pm 0.058(1 - P_c/P_s) \] or \[= \pm 0.00058(100 - \%\text{RH}) \]

(14)

Computing uncertainty due to hysteresis at various saturation pressures between \(P_s = 15.5 \) and 50 psia (with \(P_c = 14.7 \)) results in

\[\begin{align*}
 u(H) &= \pm 0.003 \%\text{RH} \quad (\text{at } P_s = 15.5, \%\text{RH} = 94.84) \\
 u(H) &= \pm 0.015 \%\text{RH} \quad (\text{at } P_s = 20, \%\text{RH} = 73.50) \\
 u(H) &= \pm 0.030 \%\text{RH} \quad (\text{at } P_s = 30, \%\text{RH} = 49.00) \\
 u(H) &= \pm 0.034 \%\text{RH} \quad (\text{at } P_s = 40, \%\text{RH} = 36.75)
\end{align*} \]
u(H) = ±0.041 %RH (at P_s=50, %RH=29.40)

3.1.3 Uncertainty in Pressure Measurement Resolution

The Analog to Digital conversion process resolves 1 part in 25000 over the range of each of the pressure transducers. Based on a rectangular distribution of the half-interval of resolution, the uncertainty component of pressure resolution is then

$$ \text{resolution}_p = \frac{\text{transducer range}}{25000} \times 0.5 / \sqrt{3} $$

- = 0.00058 psia for $P < 50$
- = 0.00174 psia for $P > 50$

Since this uncertainty is specific to each and every individual measurement taken, it must be considered separately for both the chamber and saturation pressure measurements, regardless of which transducer is being utilized for the given operating conditions. The equations for uncertainty due to chamber pressure measurement resolution, $u(R_{Pc})$, and saturation pressure measurement resolution, $u(R_{Ps})$, are similar to equations 10 and 11 and are shown as

$$ u(R_{Pc}) = \pm \{\text{resolution}_p / P_s\} \times 100 $$
$$ u(R_{Ps}) = \pm \{(P_c / (P_s \pm \text{resolution}_p)) - (P_c / P_s)\} \times 100 $$

Computing the uncertainties due to pressure measurement resolution at chamber pressure of 14.7 psia, and over the saturation pressure range of 15.5 to 150 psia results in

- $u(R_{Pc}) = \pm 0.004$ %RH (at P_s=15.5, %RH=94.84)
- $u(R_{Pc}) = \pm 0.003$ %RH (at P_s=20, %RH=73.50)
- $u(R_{Pc}) = \pm 0.003$ %RH (at P_s=30, %RH=49.00)
- $u(R_{Pc}) = \pm 0.001$ %RH (at P_s=40, %RH=36.75)
- $u(R_{Pc}) = \pm 0.001$ %RH (at P_s=50, %RH=29.40)
- $u(R_{Pc}) = \pm 0.001$ %RH (at P_s=100, %RH=14.70)
- $u(R_{Pc}) = \pm 0.000$ %RH (at P_s=150, %RH=9.80)

- $u(R_{Ps}) = \pm 0.004$ %RH (at P_s=15.5, %RH=94.84) [low range]
- $u(R_{Ps}) = \pm 0.002$ %RH (at P_s=20, %RH=73.50) [low range]
- $u(R_{Ps}) = \pm 0.001$ %RH (at P_s=30, %RH=49.00) [low range]
- $u(R_{Ps}) = \pm 0.001$ %RH (at P_s=40, %RH=36.75) [low range]
- $u(R_{Ps}) = \pm 0.000$ %RH (at P_s=50, %RH=29.40) [low range]
- $u(R_{Ps}) = \pm 0.000$ %RH (at P_s=100, %RH=14.70) [high range]
- $u(R_{Ps}) = \pm 0.000$ %RH (at P_s=150, %RH=9.80) [high range]

3.1.4 Summary of Uncertainty in the Pressure Ratio P_c/P_s

The standard uncertainty, $u_c(P_c/P_s)$, in the pressure ratio P_c/P_s is determined from the associated individual components previously shown.

$$ u_c^2(P_c/P_s) = u^2(P_c) + u^2(P_s) + u^2(R_{Pc}) + u^2(R_{Ps}) + u^2(H) $$

(17)
It is summarized in the following table.

Table 1: Standard Uncertainty Components of RH due to Pressure Ratio P_c/P_s

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Term</th>
<th>Low Range Pressure, $P_s<50$</th>
<th>High Range Pressure, $P_s>50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>A</td>
<td>$u(P_c)$</td>
<td>0.013 0.052 0.067 0.062 0.056 0.079 0.040 0.026</td>
<td>0.075 0.058 0.039 0.029 0.023 0.056 0.014 0.006</td>
</tr>
<tr>
<td>measurement</td>
<td>A</td>
<td>$u(P_s)$</td>
<td>0.004 0.003 0.001 0.001 0.001 0.001 0.000 0.000</td>
<td>0.004 0.005 0.001 0.001 0.000 0.001 0.000 0.000</td>
</tr>
<tr>
<td>resolution</td>
<td>B</td>
<td>$u(R_{pc})$</td>
<td>0.003 0.015 0.03 0.034 0.041</td>
<td>0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td>resolution</td>
<td>B</td>
<td>$u(R_{ps})$</td>
<td>0.003 0.015 0.03 0.034 0.041</td>
<td>0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td>hysteresis</td>
<td>B</td>
<td>$u(H)$</td>
<td>0.000 0.000 0.000 0.000 0.000</td>
<td>0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td>$u_c(P_c/P_s)$</td>
<td>0.076 0.080 0.083 0.076 0.073 0.097 0.042 0.027</td>
<td>0.075 0.058 0.039 0.029 0.023 0.056 0.014 0.006</td>
</tr>
</tbody>
</table>

3.2 Uncertainty in the Vapor Pressure Ratio, E_s/E_c

E_s and E_c are Saturation Vapor Pressures computed at the saturation temperature and chamber temperature respectively, using the equation of Wexler[^4]. In a perfectly ideal two-pressure humidity generator, the saturation temperature and chamber temperature would be exactly the same, resulting in an ideal E_s/E_c ratio of 1.00 exactly. A calculated E_s/E_c ratio of 1.0 contributes nothing to the calculation of %RH. However, in a real system, some slight differences do exist between the saturation and chamber temperatures, providing the need for measurement of these temperatures.

The uncertainty in RH due to temperature can be determined in a manner similar to that of equation 8, with the underlying assumptions that $F_s/F_c = 1$, and $P_c/P_s * 100 = \text{RH}$. The formula for computing the contribution due to temperature is

$$u(T) = \pm \left\{ \frac{P_c}{P_s} \left(\frac{E_{Ts+\partial Ts}}{E_{Tc+\partial Tc}} \right) \left(\frac{F_s}{F_c} \right) * 100 - RH \right\}$$

where $u(T)$ is designated as uncertainty in RH due to temperature

$$\partial T_c = \text{uncertainty in chamber temperature measurement}$$

$$\partial T_s = \text{uncertainty in saturation temperature measurement}$$

$E_{Ts+\partial Ts}$ = Saturation Vapor Pressure computed at the Saturation Temperature, T_s, when perturbed by the possible temperature uncertainty, ∂T_s

$E_{Tc+\partial Tc}$ = Saturation Vapor Pressure computed at the Saturation Temperature, T_c, when perturbed by the possible temperature uncertainty, ∂T_c.

The individual uncertainty components which must be examined are measurement uncertainty, uncertainty of vapor pressure equations, saturation vs. chamber temperature intercomparison uncertainty, measurement resolution, and self heating.
3.2.1 Measurement Uncertainty Components of Temperature
Since the temperatures are always nearly equal, and are computed as a ratio of the corresponding saturation vapor pressures, it can be easily seen that if there is no mismatch between the chamber and saturation temperatures, then the ratio becomes 1.0 exactly and there is no uncertainty contribution due to temperature. This could also be true even if the temperature measurement of the two probes was actually incorrect or in error, provided the relative difference between them was zero. So if both were in error, but indicated the same numeric value at the same equal temperature, then again there would be no uncertainty contribution. Therefore, the contribution of uncertainty to RH due to temperature measurement accuracy is considered insignificant.

The contribution of uncertainty to Dew Point due to temperature measurement accuracy is on the other hand not insignificant. Since chamber temperature has no role in the Dew Point equation only saturator temperature measurement accuracy has an affect. This affect will be covered in the Intercomparison Uncertainty section.

3.2.2 Uncertainty of Vapor Pressure Equations
The equations used for computation of vapor pressure are those of Wexler\cite{4}. While there is uncertainty associated with the use of these equations, vapor pressures are always computed in ratio to one another with temperatures nearly equal to each other. Under these circumstances, the individual vapor pressure values, while they may be in error, cause no significant uncertainty when taken as a ratio. Therefore, the contribution due to uncertainty in the vapor pressure equations is considered insignificant.

3.2.3 Saturation vs. Chamber Temperature Intercomparison Uncertainty
While the actual measurement accuracy of the two temperature probes is of little concern, the ability of the chamber and saturation temperature probes to indicate the same measured value at the same temperature is important, and is termed the intercomparison uncertainty. Intercomparison uncertainty was analyzed from as found data of 11 separate Model 2500 humidity generators during their annual calibration. Each system was tested at no fewer than 3 points over the range of 0 to 70 °C, resulting in 47 intercomparison results (difference between the indicated saturation temperature and indicated chamber temperature) from which to compute statistical standard deviation. The standard deviation of the difference between the saturation and chamber temperatures over the stated temperature range is

\[\text{Std dev} = 0.00985 ^\circ C \]

For Dew Point the saturation temperature measurement uncertainty was analyzed from the same as found data and was found to be slightly lower than the intercomparison standard deviation above. To aid in simplicity the larger intercomparison standard deviation is assumed and will be applied to the saturation temperature.

Since it is the difference between the temperature probes that is of concern, not the actual measurement accuracy, then the above number need only be applied to one of the temperatures while maintaining the other constant. In this case, the saturation temperature is chosen as the one to perturb, while maintaining the chamber temperature constant at the ideal value. The perturbation amount which represents the intercomparison uncertainty is simply the standard deviation, and is therefore

\[\partial T_s = 0.00985 ^\circ C \]
The RH uncertainty due to temperature intercomparison, \(u(T_i) \), is then written as

\[
u(T_i) = \pm \left\{ \frac{(E_{Ts} + 0.00985)}{E_{Tc}} - 1 \right\} \times \text{RH} \tag{19}\]

and may now be computed at several different saturation (or system) temperatures.

\[
u(T_i) = \pm \left\{ \frac{(E_0 + 0.00985)}{E_0} - 1 \right\} \times \text{RH} = \pm \left\{ \frac{611.6495}{611.1533} - 1 \right\} \times \text{RH} = \pm 0.00081 \times \text{RH} \quad \text{(at } T_s=T_c=0 \, ^\circ\text{C})
\]

\[
u(T_i) = \pm \left\{ \frac{E_{35.00985}}{E_{35}} - 1 \right\} \times \text{RH} = \pm \left\{ \frac{5629.514}{5626.447} - 1 \right\} \times \text{RH} = \pm 0.00055 \times \text{RH} \quad \text{(at } T_s=T_c=35 \, ^\circ\text{C})
\]

\[
u(T_i) = \pm \left\{ \frac{E_{70.00985}}{E_{70}} - 1 \right\} \times \text{RH} = \pm \left\{ \frac{31190.6}{31177.31} - 1 \right\} \times \text{RH} = \pm 0.00043 \times \text{RH} \quad \text{(at } T_s=T_c=70 \, ^\circ\text{C})
\]

3.2.4 Uncertainty in Temperature Measurement Resolution

The analog to digital conversion process, which transforms probe resistance into digital values, resolves to 0.01 °C. Based on a rectangular distribution of the half-interval, the uncertainty component of temperature resolution is then

\[
\text{resolution}_{t} = 0.01 \times \frac{0.5}{\sqrt{3}} = 0.0029
\]

Since this uncertainty is specific to each and every individual measurement taken, it must be considered separately for both the chamber and saturation temperature measurements. The equations for uncertainty due to chamber temperature resolution, \(u(R_{Tc}) \), and saturation temperature resolution, \(u(R_{Ts}) \), are given as

\[
u(R_{Tc}) = \pm \left\{ \frac{E_{Tc}}{E_{Tc+0.0029}} - 1 \right\} \times \text{RH} \tag{20}
\]

\[
u(R_{Ts}) = \pm \left\{ \frac{E_{Ts+0.0029}}{E_{Tc}} - 1 \right\} \times \text{RH} \tag{21}
\]

The uncertainty components due to temperature resolution can now be computed at several temperatures using the above equations.

\[
u(R_{Tc}) = \pm 0.00024 \times \text{RH} \quad \text{(at } T_s=T_c=0 \, ^\circ\text{C})
\]

\[
u(R_{Tc}) = \pm 0.00016 \times \text{RH} \quad \text{(at } T_s=T_c=35 \, ^\circ\text{C})
\]

\[
u(R_{Tc}) = \pm 0.00013 \times \text{RH} \quad \text{(at } T_s=T_c=70 \, ^\circ\text{C})
\]

\[
u(R_{Ts}) = \pm 0.00024 \times \text{RH} \quad \text{(at } T_s=T_c=0 \, ^\circ\text{C})
\]

\[
u(R_{Ts}) = \pm 0.00016 \times \text{RH} \quad \text{(at } T_s=T_c=35 \, ^\circ\text{C})
\]

\[
u(R_{Ts}) = \pm 0.00013 \times \text{RH} \quad \text{(at } T_s=T_c=70 \, ^\circ\text{C})
\]

3.2.5 Uncertainty due to Self-Heating of Chamber Temperature Probe

The chamber temperature probe is generally calibrated and checked in a well-stirred fluid bath, but used in air. There is the possibility of some self-heating associated with this measurement then that must be considered. The self-heating, with temperature measurements in °C, is
estimated to be 0.05% of reading. The equation for the temperature uncertainty of self-heating is then

\[
\text{Self-Heating} = 0.05\% \times \frac{T_c}{\sqrt{3}} = 0.00029 \times T_c
\]

The equation for RH uncertainty due to self heating of the chamber temperature probe is then expressed as

\[
\text{u(SH)} = \pm \left\{ \left(\frac{E_{Ts}}{E_{1.00029 \times T_c}} \right) - 1 \right\} \times \text{RH} \tag{22}
\]

Again, computing this at several temperatures results in

\[
\begin{align*}
\text{u(SH)} &= \pm 0 \text{ (at } T_s = T_c = 0 \, ^\circ\text{C)} \\
\text{u(SH)} &= \pm 0.00055 \times \text{RH} \text{ (at } T_s = T_c = 35 \, ^\circ\text{C)} \\
\text{u(SH)} &= \pm 0.00087 \times \text{RH} \text{ (at } T_s = T_c = 70 \, ^\circ\text{C)}
\end{align*}
\]

3.2.6 Summary of Uncertainty in the Saturation Vapor Pressure Ratio \(E_s/E_c\)

The standard uncertainty of RH due to temperature, \(u_c(E_s/E_c)\), in the saturation vapor pressure ratio \(E_s/E_c\) is determined from the individual components previously shown, and are combined using the equation

\[
u_c^2(E_s/E_c) = u_c^2(T_i) + u_c^2(R_{Ts}) + u_c^2(R_{Tc}) + u_c^2(SH) \tag{23} \]

Table 2: Standard Uncertainty Components of RH due to Vapor Pressure Ratio \(E_s/E_c\)

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Term</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(u(T_i)/\text{RH})</td>
<td>0 °C</td>
</tr>
<tr>
<td>Ts-Tc intercomparison</td>
<td>A</td>
<td>(u(T_i)/\text{RH})</td>
<td>0.00081</td>
</tr>
<tr>
<td>Ts resolution</td>
<td>B</td>
<td>(u(R_{Ts})/\text{RH})</td>
<td>0.00024</td>
</tr>
<tr>
<td>Tc resolution</td>
<td>B</td>
<td>(u(R_{Tc})/\text{RH})</td>
<td>0.00024</td>
</tr>
<tr>
<td>self heating</td>
<td>B</td>
<td>(u(SH)/\text{RH})</td>
<td>0.00000</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td>(u(E_s/E_c)/\text{RH})</td>
<td>0.00088</td>
</tr>
</tbody>
</table>

3.3 Uncertainty in the Enhancement Factor Ratio \(F_s/F_c\)

Enhancement factors are slight correction factors used to account for the non-ideal behavior of water vapor when admixed with other gases. The enhancement factor is dependent on both temperature and pressure and is computed with the equation of Greenspan\(^5\). In determining the uncertainty due to the enhancement factor ratio, the individual uncertainty components that must be evaluated are measurement uncertainty due to temperature and pressure, and uncertainty of the enhancement factor equations.

3.3.1 Measurement Uncertainty due to Temperature and Pressure

The enhancement factor ratio, \(F_s/F_c\), varies insignificantly with small perturbations in temperature and pressure. Uncertainties calculated from the ratio of \(F_s/F_c\) are at least an order of magnitude
less than the uncertainties computed from the terms P_c/P_s and E_s/E_c. Therefore, measurement uncertainty due to temperature and pressure is considered negligible for this evaluation.

3.3.2 Uncertainty of the Enhancement Factor Equation

The computational uncertainty of the enhancement factor ratio causes a corresponding uncertainty in computed RH of ±0.007% at 10%RH, reducing linearly toward an RH uncertainty of 0 at 100%. An equation to define this systematic uncertainty in RH due to the enhancement factor equation is written as

$$
\text{EqDiff} = \pm[0.00008(100-\text{RH})]
$$

Since this is determined to be a known, systematic, uncorrected error, the uncertainty in RH due to the enhancement factor equation, $u(F_{eq})$, is then

$$
u(F_{eq}) = 0.00008(100-\text{RH})
$$

3.3.3 Summary of Uncertainty in the Enhancement Factor Ratio

The standard uncertainty, $u_c(F_s/F_c)$, in the enhancement factor ratio is dominated by the uncertainty of the enhancement factor equation, and is therefore given as

$$
u_c(F_s/F_c) = 0.00008(100-\text{RH})
$$

Table 3: Standard Uncertainty Components of RH due to Enhancement Factor

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Term</th>
<th>Low Range Pressure, $P_s<50$</th>
<th>High Range Pressure, $P_s>50$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>20</td>
</tr>
<tr>
<td>equation</td>
<td>B</td>
<td>$u(F_{eq})$</td>
<td>0.0004</td>
<td>0.0021</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td>$u_c(F_s/F_c)$</td>
<td>0.0004</td>
<td>0.0021</td>
</tr>
</tbody>
</table>

3.4 Uncertainty due to Saturator Efficiency

All two pressure humidity generators rely on the ability of the saturator to fully saturate the gas with water vapor as it passes from inlet to outlet. This analysis assumes 100% saturator efficiency.

4.0 Combined Standard Uncertainty

The combined standard uncertainty, $u_c(\text{RH})$, is obtained by statistical combination of the standard uncertainty components of pressure ratio, vapor pressure ratio, enhancement factor ratio, and saturator efficiency. The combined uncertainty formula is then the sum of the variances

$$
u_c^2(\text{RH}) = u_c^2(P_c/P_s) + u_c^2(E_s/E_c) + u_c^2(F_s/F_c)
$$
The following tables reflect the standard uncertainty components and the combined standard uncertainty at various temperatures and pressures.

Table 4: Combined Standard Uncertainty Components of RH at 0°C

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Term</th>
<th>Low Range Pressure, Ps<50</th>
<th>High Range Pressure, Ps>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>20</td>
</tr>
<tr>
<td>pressure ratio</td>
<td>A,B</td>
<td>$\bar{u}(P_c/P_s)$</td>
<td>0.076</td>
<td>0.080</td>
</tr>
<tr>
<td>vapor pressure ratio</td>
<td>A,B</td>
<td>$\bar{u}(E_s/E_c)$</td>
<td>0.083</td>
<td>0.065</td>
</tr>
<tr>
<td>enhancement factor ratio</td>
<td>B</td>
<td>$\bar{u}(F_s/F_c)$</td>
<td>0.0004</td>
<td>0.0021</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td>$\bar{u}(\text{RH})$</td>
<td>0.113</td>
<td>0.103</td>
</tr>
</tbody>
</table>

Table 5: Combined Standard Uncertainty Components of RH at 35°C

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Term</th>
<th>Low Range Pressure, Ps<50</th>
<th>High Range Pressure, Ps>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>20</td>
</tr>
<tr>
<td>pressure ratio</td>
<td>A,B</td>
<td>$\bar{u}(P_c/P_s)$</td>
<td>0.076</td>
<td>0.080</td>
</tr>
<tr>
<td>vapor pressure ratio</td>
<td>A,B</td>
<td>$\bar{u}(E_s/E_c)$</td>
<td>0.077</td>
<td>0.060</td>
</tr>
<tr>
<td>enhancement factor ratio</td>
<td>B</td>
<td>$\bar{u}(F_s/F_c)$</td>
<td>0.0004</td>
<td>0.0021</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td>$\bar{u}(\text{RH})$</td>
<td>0.108</td>
<td>0.100</td>
</tr>
</tbody>
</table>
Combined Standard Uncertainty Components of RH at 70°C

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Term</th>
<th>Low Range Pressure, Ps<50</th>
<th>High Range Pressure, Ps>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>20</td>
</tr>
<tr>
<td>pressure ratio</td>
<td>A,B</td>
<td>$u_c(P_c/P_s)$</td>
<td>0.076</td>
<td>0.080</td>
</tr>
<tr>
<td>vapor pressure ratio</td>
<td>A,B</td>
<td>$u_c(E_s/E_c)$</td>
<td>0.094</td>
<td>0.073</td>
</tr>
<tr>
<td>enhancement factor ratio</td>
<td>B</td>
<td>$u_c(F_s/F_d)$</td>
<td>0.0004</td>
<td>0.0021</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td>$u_c(RH)$</td>
<td>0.121</td>
<td>0.108</td>
</tr>
</tbody>
</table>

4.1 Combined Standard Dew Point Uncertainty

Given any %RH, saturation temperature, saturation pressure and chamber pressure a corresponding dew point can be derived. The following tables show the combined Dew Point uncertainty at various saturation temperatures and dew points, using the RH values and uncertainties from the previous sections.

Table 7: Combined Standard Uncertainty Components of Dew Point at 0°C

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Term</th>
<th>Low Range Pressure, Ps<50</th>
<th>High Range Pressure, Ps>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>20</td>
</tr>
<tr>
<td>pressure ratio</td>
<td>A,B</td>
<td>$u_c(P_c/P_s)$</td>
<td>-0.64</td>
<td>-3.69</td>
</tr>
<tr>
<td>vapor pressure</td>
<td>A,B</td>
<td>$u_c(E_s/E_c)$</td>
<td>0.012</td>
<td>0.011</td>
</tr>
<tr>
<td>enhancement factor ratio</td>
<td>B</td>
<td>$u_c(F_s/F_d)$</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td>$u_c(DP)$</td>
<td>0.016</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Table 8: Combined Standard Uncertainty Components of Dew Point at 35°C

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Term</th>
<th>Low Range Pressure, Ps<50</th>
<th>High Range Pressure, Ps>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>20</td>
</tr>
<tr>
<td>pressure ratio</td>
<td>A,B</td>
<td>$u_c(P_c/P_s)$</td>
<td>0.015</td>
<td>0.019</td>
</tr>
<tr>
<td>vapor pressure</td>
<td>A,B</td>
<td>$u_c(E_s)$</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>enhancement factor ratio</td>
<td>B</td>
<td>$u_c(F_s/F_d)$</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td>$u_c(DP)$</td>
<td>0.021</td>
<td>0.024</td>
</tr>
</tbody>
</table>
Table 9: Combined Standard Uncertainty Components of Dew Point at 70°C

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Term</th>
<th>Low Range Pressure, Ps<50</th>
<th>High Range Pressure, Ps>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>20</td>
</tr>
<tr>
<td>pressure ratio</td>
<td>A,B</td>
<td>u_c(Pc/Ps)</td>
<td>0.018</td>
<td>0.024</td>
</tr>
<tr>
<td>vapor pressure</td>
<td>A,B</td>
<td>u_c(Es)</td>
<td>0.023</td>
<td>0.022</td>
</tr>
<tr>
<td>enhancement factor ratio</td>
<td>B</td>
<td>u_c(Fs/Fd)</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td>u_c(DP)</td>
<td>0.029</td>
<td>0.033</td>
</tr>
</tbody>
</table>

5.0 Expanded Uncertainty

Utilizing a coverage factor k=2, the expanded uncertainty, U, is expressed in the following table at various temperatures and humidities, using the formula

$$U = k \times u_c(RH)$$

All values expressed for expanded uncertainty, U, are %Relative Humidity (%RH).

Table 10: Expanded Uncertainty of RH

<table>
<thead>
<tr>
<th>Saturation Temperature</th>
<th>15.5</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>50</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>%RH</td>
<td>94.84</td>
<td>73.50</td>
<td>49.00</td>
<td>36.75</td>
<td>29.40</td>
<td>29.40</td>
<td>14.70</td>
<td>9.80</td>
</tr>
<tr>
<td>%RH</td>
<td></td>
<td>%RH</td>
<td>%RH</td>
<td>%RH</td>
<td>%RH</td>
<td>%RH</td>
<td>%RH</td>
<td>%RH</td>
</tr>
<tr>
<td>0 °C</td>
<td>±0.23</td>
<td>±0.21</td>
<td>±0.19</td>
<td>±0.17</td>
<td>±0.16</td>
<td>±0.20</td>
<td>±0.09</td>
<td>±0.06</td>
</tr>
<tr>
<td>35 °C</td>
<td>±0.22</td>
<td>±0.20</td>
<td>±0.18</td>
<td>±0.16</td>
<td>±0.15</td>
<td>±0.20</td>
<td>±0.09</td>
<td>±0.06</td>
</tr>
<tr>
<td>70 °C</td>
<td>±0.24</td>
<td>±0.22</td>
<td>±0.19</td>
<td>±0.17</td>
<td>±0.16</td>
<td>±0.20</td>
<td>±0.09</td>
<td>±0.06</td>
</tr>
</tbody>
</table>
5.1 Expanded Dew Point Uncertainty

Utilizing a coverage factor \(k=2 \), the expanded uncertainty, \(U \), is expressed in the following table at various temperatures and dew points, using the formula

\[
U = k \cdot u_c(DP)
\]

(29)

All values expressed for expanded uncertainty, \(U \), are Dew Point (°C).

Table 11: Expanded Uncertainty of Dew Point

<table>
<thead>
<tr>
<th>Saturation Temperature</th>
<th>Low Range Pressure, (P_s \leq 45)</th>
<th>High Range Pressure, (P_s \geq 45)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.5</td>
<td>20</td>
</tr>
<tr>
<td>0 °C</td>
<td>±0.03</td>
<td>±0.04</td>
</tr>
<tr>
<td></td>
<td>±0.04</td>
<td>±0.05</td>
</tr>
<tr>
<td>35 °C</td>
<td>±0.06</td>
<td>±0.07</td>
</tr>
<tr>
<td>70 °C</td>
<td>±0.07</td>
<td>±0.08</td>
</tr>
</tbody>
</table>
6.0 References

